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PCCS4305 Compiler Design (3-0-0) 

MODULE – 1       (Lecture hours: 13)  
Introduction: Overview and phases of compilation.   (2-hours)  
Lexical Analysis: Non-deterministic and deterministic finite automata (NFA & DFA), regular grammar, regular expressions and regular languages, design of a lexical analyser as a DFA, lexical analyser generator.    (3-hours)  
Syntax Analysis: Role of a parser, context free grammars and context free languages, parse trees and derivations, ambiguous grammar.  
Top Down Parsing: Recursive descent parsing, LL(1) grammars, non-recursive predictive parsing, error reporting and recovery.  
Bottom Up Parsing: Handle pruning and shift reduces parsing, SLR parsers and construction or SLR parsing tables, LR(1) parsers and construction of LR(1) parsing tables, LALR parsers and construction of efficient LALR parsing tables, parsing using ambiguous grammars, error reporting and recovery, parser generator. (8-hours)  
MODULE – 2      (Lecture hours: 14)  
Syntax Directed Translation: Syntax directed definitions (SDD), inherited and synthesized attributes, dependency graphs, evaluation orders for SDD, semantic rules, application of syntax directed translation.    (5-hours)  
Symbol Table: Structure and features of symbol tables, symbol attributes and scopes.         (2-hours)  
Intermediate Code Generation: DAG for expressions, three address codes - quadruples and triples, types and declarations, translation of expressions, array references, type checking and conversions, translation of Boolean expressions and control flow statements, back patching, intermediate code generation for procedures.        (7-hours)  
MODULE – 3       (Lecture hours: 8)  
Run Time Environment: storage organizations, static and dynamic storage allocations, stack allocation, handlings of activation records for calling sequences.          (3-hours)  
Code Generations: Factors involved, registers allocation, simple code generation using stack allocation, basic blocks and flow graphs, simple code generation using flow graphs.        (3-hours)  
Elements of Code Optimization: Objective, peephole optimization, concepts of elimination of local common sub-expressions, redundant and un-reachable codes, basics of flow of control optimization.     (2-hours)  
Text Book:  Compilers – Principles, Techniques and Tools, Authors: Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman , Publisher: Pearson     

Lecture Manual 
Lecture 01: Overview of Compiler 
Lecture 02: Phases of compilation. 
Lecture 03: Non-deterministic and deterministic finite automata (NFA & DFA),  
Lecture 04: Regular grammar, regular expressions and regular languages. 
Lecture 05: Design of a lexical analyser as a DFA, lexical analyser generator. 
Lecture 06:Role of a parser, context free grammars and context free languages, parse trees and derivations, ambiguous grammar.  
Lecture 07: Top Down Parsing: Recursive descent parsing, LL(1) grammars,  
Lecture 08: Non-recursive predictive parsing, error reporting and recovery.  
Lecture 09: Bottom Up Parsing: Handle pruning and shift reduces parsing, SLR parsers and construction or SLR parsing tables,  
Lecture 10: LR(1) parsers and construction of LR(1) parsing tables,  
Lecture 11: LALR parsers and construction of efficient LALR parsing tables,  
Lecture 12: Parsing using ambiguous grammars,  
Lecture 13: Error reporting and recovery, parser generator. 
Lecture 14: Syntax directed definitions (SDD),  
Lecture 15: Inherited and synthesized attributes,  
Lecture 16: Dependency graphs,  
Lecture 17: Evaluation orders for SDD,  
Lecture 18: Semantic rules, application of syntax directed translation. 
Lecture 19: Structure and features of symbol tables, 
Lecture 20: Symbol attributes and scopes. 
Lecture 21: DAG for expressions, 
Lecture 22: Three address codes - quadruples and triples, 
Lecture 23: Types and declarations, translation of expressions, 
Lecture 24: Array references, type checking and conversions, 
Lecture 25: Translation of Boolean expressions and control flow statements, 
Lecture 26: Back patching, 
Lecture 27: Intermediate code generation for procedures. 
Lecture 28: Storage organizations, static and dynamic storage allocations, 
Lecture 29: Stack allocation, 
Lecture 30: Handlings of activation records for calling sequences. 
Lecture 31: Factors involved in code generation, registers allocation, 
Lecture 32: Simple code generation using stack allocation, 
Lecture 33: Basic blocks and flow graphs, simple code generation using flow graphs. 
Lecture 34: Objective, peephole optimization, concepts of elimination of local common sub-expressions, redundant and un-reachable codes, 
Lecture 35: Basics of flow of control optimization. 
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The reduction in number of passes can be accomplished by a technique called as 
backpatching. During the compilation process, the output of some phases cannot be determined as they depend on the inputs of the later phases. To overcome this huddle the phase can generate output with slots that can be filled later after more the input can be read. E.g. GOTO statement implementation in case of a single pass compiler we make use of backpatching technique. 
COMPILER WRITING TOOLS There are a number of tools that are used to construct a compiler called as compiler-
compiler, compiler-generator or translator-writing system. They produce compiler form some form of specification of a source language and target machine. The input specification for these systems may contain: 

• A description of the lexical and syntactic structure of the source language. 
• A description of what output is to be generated for each source language construct, and 
• A description of the target machine. There is a trade-off between how much of the work the compiler-compiler can do automatically for the user to the flexibility of the system. E.g. the rules for identifier name is usually same for all the compiler, but if the language is flexible enough to add more rule for naming identifier then very less can be done by the compiler-complier. The supports given by compiler-compiler are as follows: 
• Scanner generator: A scanner can be most easily designed by giving the corresponding regular expressions for the tokens. 
• Parser generator: A description of the syntax used in the language can be made input to the compiler-compiler in the form of context free grammar to obtain a parser. A parser is a unique phase in the compiler design and hence a mechanically generated compiler is more reliable that produced by hand. 
• Syntax-directed  translation  engines:  that  produce  collections of  routines for walking a parse  tree and generating intermediate code. 
• Code-generator generators: that produce a code generator from a collection of  rules  for  translating each operation  of  the  intermediate  language  into the machine language for a target machine. 
• Data-flow  analysis  engines:  that  facilitate  the  gathering  of  information about  how  values  are  transmitted  from  one  part  of  a  program  to each other part.  Data-flow analysis is a key  part of  code optimization. 

• Compiler-construction  toolkits:  that provide  an integrated  set of  routines for constructing various phases of  a compiler. 
• Facilities for the code generation: The mapping of the high-level language to that of the assembly, intermediate or object code is provided to the compiler-compiler, so the routine may be called at the correct time in generation. They also specifies the decision table that select the object code. 

BOOTSTRAPPING  Three languages characterize a compiler are as follows: 
• The source language (X) 
• The target language (Y) 
• The language in which the compiler is written (Z) The compilers are represented as CZXY, where X, Y and Z are as above. It is also possible to produce object code for a different machine while running on a machine. This phenomenon is called as cross-compiler.  Bootstrapping is process of creation of a new compiler for a different machine by making use of existing compiler. E.g. let take us have two machine A and B. And we are to create a compiler for machine B by making use of a compiler for machine A. CSLA ------>|CASA |--------->CALA //Compiler for machine A written in A for language L. CLLB ------>|CALA |--------->CALB //Compiler for machine B written in A for language L. CLLB ------>|CALB |--------->CBLB //Compiler for machine B written in B for language L. The above equations are based on the principle can be listed as below: CAXY ------>|CAAB |--------->CBXY This is how we obtain the compiler for a new machine form an existing compiler of a different machine.    


