

BY:

LE

KISHORE KUMA

ECTURE NOTES

AR SAHU, DEPT O

K
SR

RO

ON COMPILER D

OF INFORMATION

KISHORE
R. LECTURER

OLAND INST

C

DESIGN P a g e |

N TECHNOLOGY

KUMAR
R, DEPARTM

TITUTE OF TE

COMP

1

Y, RIT, BERHAMP

(PCCS4

SAHU
ENT OF INFO

ECHNOLOGY

PILER

UR.

4305)

ORMATION T

Y, BERHAMPU

R DES

TECHNOLOG

UR

SIGN

GY

LECTURE NOTES ON COMPILER DESIGN P a g e | 2

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

PCCS4305 Compiler Design (3-0-0)

MODULE – 1 (Lecture hours: 13)
Introduction: Overview and phases of compilation. (2-hours)
Lexical Analysis: Non-deterministic and deterministic finite automata (NFA & DFA), regular grammar, regular expressions and regular languages, design of a lexical analyser as a DFA, lexical analyser generator. (3-hours)
Syntax Analysis: Role of a parser, context free grammars and context free languages, parse trees and derivations, ambiguous grammar.
Top Down Parsing: Recursive descent parsing, LL(1) grammars, non-recursive predictive parsing, error reporting and recovery.
Bottom Up Parsing: Handle pruning and shift reduces parsing, SLR parsers and construction or SLR parsing tables, LR(1) parsers and construction of LR(1) parsing tables, LALR parsers and construction of efficient LALR parsing tables, parsing using ambiguous grammars, error reporting and recovery, parser generator. (8-hours)
MODULE – 2 (Lecture hours: 14)
Syntax Directed Translation: Syntax directed definitions (SDD), inherited and synthesized attributes, dependency graphs, evaluation orders for SDD, semantic rules, application of syntax directed translation. (5-hours)
Symbol Table: Structure and features of symbol tables, symbol attributes and scopes. (2-hours)
Intermediate Code Generation: DAG for expressions, three address codes - quadruples and triples, types and declarations, translation of expressions, array references, type checking and conversions, translation of Boolean expressions and control flow statements, back patching, intermediate code generation for procedures. (7-hours)
MODULE – 3 (Lecture hours: 8)
Run Time Environment: storage organizations, static and dynamic storage allocations, stack allocation, handlings of activation records for calling sequences. (3-hours)
Code Generations: Factors involved, registers allocation, simple code generation using stack allocation, basic blocks and flow graphs, simple code generation using flow graphs. (3-hours)
Elements of Code Optimization: Objective, peephole optimization, concepts of elimination of local common sub-expressions, redundant and un-reachable codes, basics of flow of control optimization. (2-hours)
Text Book: Compilers – Principles, Techniques and Tools, Authors: Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman , Publisher: Pearson

Lecture Manual
Lecture 01: Overview of Compiler
Lecture 02: Phases of compilation.
Lecture 03: Non-deterministic and deterministic finite automata (NFA & DFA),
Lecture 04: Regular grammar, regular expressions and regular languages.
Lecture 05: Design of a lexical analyser as a DFA, lexical analyser generator.
Lecture 06:Role of a parser, context free grammars and context free languages, parse trees and derivations, ambiguous grammar.
Lecture 07: Top Down Parsing: Recursive descent parsing, LL(1) grammars,
Lecture 08: Non-recursive predictive parsing, error reporting and recovery.
Lecture 09: Bottom Up Parsing: Handle pruning and shift reduces parsing, SLR parsers and construction or SLR parsing tables,
Lecture 10: LR(1) parsers and construction of LR(1) parsing tables,
Lecture 11: LALR parsers and construction of efficient LALR parsing tables,
Lecture 12: Parsing using ambiguous grammars,
Lecture 13: Error reporting and recovery, parser generator.
Lecture 14: Syntax directed definitions (SDD),
Lecture 15: Inherited and synthesized attributes,
Lecture 16: Dependency graphs,
Lecture 17: Evaluation orders for SDD,
Lecture 18: Semantic rules, application of syntax directed translation.
Lecture 19: Structure and features of symbol tables,
Lecture 20: Symbol attributes and scopes.
Lecture 21: DAG for expressions,
Lecture 22: Three address codes - quadruples and triples,
Lecture 23: Types and declarations, translation of expressions,
Lecture 24: Array references, type checking and conversions,
Lecture 25: Translation of Boolean expressions and control flow statements,
Lecture 26: Back patching,
Lecture 27: Intermediate code generation for procedures.
Lecture 28: Storage organizations, static and dynamic storage allocations,
Lecture 29: Stack allocation,
Lecture 30: Handlings of activation records for calling sequences.
Lecture 31: Factors involved in code generation, registers allocation,
Lecture 32: Simple code generation using stack allocation,
Lecture 33: Basic blocks and flow graphs, simple code generation using flow graphs.
Lecture 34: Objective, peephole optimization, concepts of elimination of local common sub-expressions, redundant and un-reachable codes,
Lecture 35: Basics of flow of control optimization.

WHY TO
• Tim
• Tc

OVERVI
TranslatoA translatlanguage i.e. object

CompilerIf the souC++ etc language such a traExecutingprogrammprocess:
• Tcth
• Om

InterpretTranslato
intermedi
interpreteIt is smallwith the din executithe object

O STUDY COMPTo study the conmplementation in To study the develertain translator c
IEW OF COMPI
or tor is a program thi.e. source languag
or target language

r urce language is a and the object like assembly oranslator is called a g a program ming language i
The source programompiled that is the object programObject program imemory and execu
ter r that transforms
ate code, which

er. E.g. BASIC, SNOBler than compilersdisadvantage that,ion of intermediatt program in case o
BY:

INTR

PILER DESIGN nstructs of modemachine languagelopment of tools tcomponents.
ILERS hat takes as input
ge and produces a
e.
high-level languaglanguage is a lr machine languacompiler. written in hs basically a tw

m must first be translated into m. s loaded into ted.
a programming lacan be directly BOL, JCL etc. s but suffers , it is slower te code that of compiler.

LE

KISHORE KUMA

RODUCTION T

rn programming e of a typical computhat can be used
a program writtens output a program

ge like C, low-level age, then
high-level wo step

anguage into a simexecuted using

ECTURE NOTES

AR SAHU, DEPT O

CHAPTER-
TO COMPILE

languages and tuter. in the constructio
n in one programmm in another lang

plified language caa program called

ON COMPILER D

OF INFORMATION

-01
ERS

their on of
ming uage

alled d an

HybrSomecompthe s
code compi.e. ingive over comp
AssemIf thelangu
PrepIf thehigh-prepr
NEEProgrcompcode differcodesfollow

•

•

•

DESIGN P a g e |

N TECHNOLOGY

rid Compiler e languages like JApiler as well as insource code is coby means of apiler and then a nterpreter runs tthe output. The here are callpilers.
mbler e source languageuage, then the tran

processor e source language -level language throcessor.
ED OF TRANSLAramming in machiputer in terms of in machine langrentiate between s in machine langws:
• Symbolic Asselanguage thatcomputer canrequired to traas assembler.
• Macros : Assereplacement cafor a macro nmacro need tothe macro bod
• High-Level Laas the prograrepresentation

3

Y, RIT, BERHAMP

AVA make use of nterpreter. First nverted to byte a translator i.e. virtual machine the bytecode to compiler used led as hybrid
e is assembly lannslator is called an
is a high-level lanhen the translator

ATORS ine language is difbits, registers, anguage is combinaoperator and opeguage. Some more
embly Language :t uses mnemonicnnot understand anslate these sym
embly language haapability. In case oname. It means, wo inserted wherevedy with appropriat
anguages : It is difammer must be n and complex

UR.

nguage and the taassembler.
nguage and the tarr is called as pre
fficult because we nd very primitive ations of 0's anderands. Hence it ise reasons for the
: Assembly languas names for opethese mnemonicbols to binary cod
as feature called mof macro, the assewithout which theer necessary. So the arguments whenfficult to program aware with the operand mnem

arget language is
rget language is a eprocessor. E.g. F
communicate diremachine operatiod 1's, so it is dis impossible to mneed of translato

age is a symbolic herator and operacs; hence a trande. This translator
macro that represmbly codes are sue code representehe macro processornever invoked. in assembly languinstruction formmonics. To avoi

machine
different FORTRAN

ectly with ons. Since ifficult to modify the ors are as
high-level ands. The nslator is r is called
sents text ubstituted ed by the
r replaces
uage also, mats, data id these

dpmbpla
STRUCTThe basicinstructioin the stru
phase is a
source proThe figurThe work
Lexical Anis the firscharacterthat logicare callekeywordstokens geto the ninformati
Syntax Anthe secontokens togexpressiocombinedsyntactic tree whos
Semantic Ain an exprthe type tone, this i
Intermediproduces intermedi

disadvantages, higprogrammer to exmany of the detailseing understood bprogram that helpanguage. A compile
TURE OF A COMc function of a on, which can neveucture of a compile
a logical cohesive
ogram and producee shows the phask of each phase is a
nalysis: Otherwise t phase of compilas of the source cally belongs togetd tokens. The us, identifier, operatnerated by the scanext phase withon.
nalysis: Otherwise cnd phase of compgether into syntacns i.e. A+B, that d to form statemstructure is represe nodes are the to

Analysis: After theressions are checkthen the data type s called as coercion

iate Code Generatstream of simpleiate code but the c BY:

gh-level languagespress algorithms s of how a specifiby the computer. ps in translatinger in complex in st
MPILER compiler to traner be thought as a ser, it is divided into

operation that ta
es as output anothses of a compiler.as follows: called as scanneration. It separatescode into groupsther; these groupsusual tokens aretors etc. The set ofanner is passed onh other relevant
called as parser ispilation. It groupsctic structures likecould be furtherments. Often theesented as a parseoken form the scane parse tree has beked. This is called aare same by conv
n.

tion: Accepts synte instructions. Thecommon is one th

LE

KISHORE KUMA

s has been devein a more naturac computer functiHence we have a g the high-level tructure than assem
nslate the high-lesingle step proceso series of sub pro
akes as input one
er representation.

r e f n t
 r e e nner. een generated, the as type checking. If verting the lower d
tactic structures ere are many wayat uses one opera

ECTURE NOTES

AR SAHU, DEPT O

eloped that allowal notation that avions. But it is far fcompiler, yet anolanguage to macmbler.
vel code to macs. To avoid compleocesses called phas
 representation of

types of the operaf there is a mismatdata type to the hi
form the parser ys of representatioator and few opera

ON COMPILER D

OF INFORMATION

ws a voids from other chine
chine exity
ses. A
f the

ators ch in igher
and on of ands.

Interthey
Code that tanothway t
Code on ththe rgener
Tableby th(inte
symb

Errorat an

Passpass transwhicThe nand mof th
passexecumemwrite

DESIGN P a g e |

N TECHNOLOGY

rmediate code are do not specify the
Optimization: An the ultimate objecher intermediate cthat saves time an
Generation: Last phe memory locatioregisters in which rator is a difficult p

e Management: Othhe program and ger, real, etc). Th
bol table.
r Handler: All the py phase in the pro

• Lexical err
• Syntax errlanguage s
• Intermedioperands
• Code optim
• Code genefit into a co
• Symbol tab

es: Portions of onreads the sourcesformations specifh may then be reanumber of passes machine constructe language codes compiler is preferution than that omory and faster ines an intermediate

4

Y, RIT, BERHAMP

similar to that ofregister to be useoptional phase dect program runs fcode that does thd/or space. phase of compilations for data, selecteach computationpart of compiler dherwise called boorecords essential e data structure u
phases are linked tcess of compilatioror due to a missperor due to a sentensyntax. ate code generatomization error dueeration error due omputer word. ble entry error due or more phases e program or thfied by its phases, d by a subsequentand the grouping tion also. A minimuas they allow use rred on machine tf a single pass con execution. This ie file.

UR.

f the assembly codd for each operatioesigned to improvfaster and/or takehe same job as the
on that produces tting code to accessn is to be done. Design, both practic

okkeeping, that keeinformation abouused to record th
to error handler asn. These errors maelled token nce not in accordaor error due to me to a code being uto a compiler gene to multiple entryare combined intoe output of the and writes output pass. of phases dependsum of two passes iof a variable befothat has less memompiler that runsis because a mult

de but differ in a on. ve the intermediatees less space. The e original but perh
the object code bys each datum, and Designing an effeccally and theoreticeps track of the naut each, such as his information is
s error may be encay be like ance with the progmismatch in the tynreachable. nerated constant, ty of an identifier. o a module called previous pass, mut into an intermes on the language is required to comore its declarationmory and is even ss on machine havti-pass compiler r

way that
e code so output is haps in a

y deciding selecting tive code ally. ames used its type called as
countered
gramming ype of the
too big to
a pass. A makes the diate file, structure mpile most . A multi-slower in ving large reads and

LECTURE NOTES ON COMPILER DESIGN P a g e | 5

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

The reduction in number of passes can be accomplished by a technique called as
backpatching. During the compilation process, the output of some phases cannot be determined as they depend on the inputs of the later phases. To overcome this huddle the phase can generate output with slots that can be filled later after more the input can be read. E.g. GOTO statement implementation in case of a single pass compiler we make use of backpatching technique.
COMPILER WRITING TOOLS There are a number of tools that are used to construct a compiler called as compiler-
compiler, compiler-generator or translator-writing system. They produce compiler form some form of specification of a source language and target machine. The input specification for these systems may contain:

• A description of the lexical and syntactic structure of the source language.
• A description of what output is to be generated for each source language construct, and
• A description of the target machine. There is a trade-off between how much of the work the compiler-compiler can do automatically for the user to the flexibility of the system. E.g. the rules for identifier name is usually same for all the compiler, but if the language is flexible enough to add more rule for naming identifier then very less can be done by the compiler-complier. The supports given by compiler-compiler are as follows:
• Scanner generator: A scanner can be most easily designed by giving the corresponding regular expressions for the tokens.
• Parser generator: A description of the syntax used in the language can be made input to the compiler-compiler in the form of context free grammar to obtain a parser. A parser is a unique phase in the compiler design and hence a mechanically generated compiler is more reliable that produced by hand.
• Syntax-directed translation engines: that produce collections of routines for walking a parse tree and generating intermediate code.
• Code-generator generators: that produce a code generator from a collection of rules for translating each operation of the intermediate language into the machine language for a target machine.
• Data-flow analysis engines: that facilitate the gathering of information about how values are transmitted from one part of a program to each other part. Data-flow analysis is a key part of code optimization.

• Compiler-construction toolkits: that provide an integrated set of routines for constructing various phases of a compiler.
• Facilities for the code generation: The mapping of the high-level language to that of the assembly, intermediate or object code is provided to the compiler-compiler, so the routine may be called at the correct time in generation. They also specifies the decision table that select the object code.

BOOTSTRAPPING Three languages characterize a compiler are as follows:
• The source language (X)
• The target language (Y)
• The language in which the compiler is written (Z) The compilers are represented as CZXY, where X, Y and Z are as above. It is also possible to produce object code for a different machine while running on a machine. This phenomenon is called as cross-compiler. Bootstrapping is process of creation of a new compiler for a different machine by making use of existing compiler. E.g. let take us have two machine A and B. And we are to create a compiler for machine B by making use of a compiler for machine A. CSLA ------>|CASA |--------->CALA //Compiler for machine A written in A for language L. CLLB ------>|CALA |--------->CALB //Compiler for machine B written in A for language L. CLLB ------>|CALB |--------->CBLB //Compiler for machine B written in B for language L. The above equations are based on the principle can be listed as below: CAXY ------>|CAAB |--------->CBXY This is how we obtain the compiler for a new machine form an existing compiler of a different machine.

